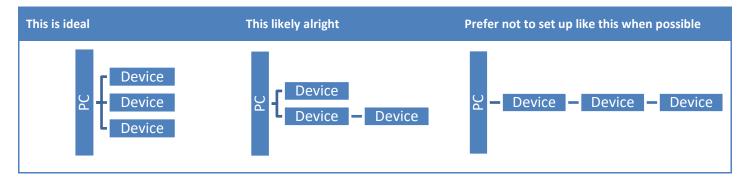
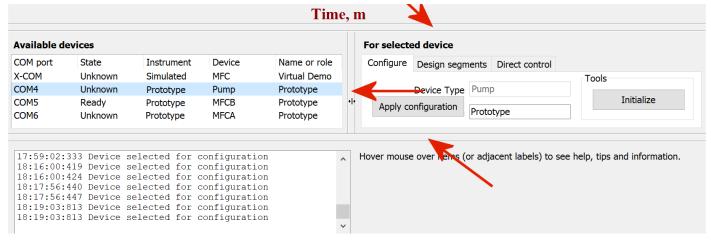
1 Installation and update process

The software .exe file is native windows application type, so it does not require installation process for itself, and it does not rely on any supporting frameworks (such as .net, c++, java, etc. redistributables), so there is no download or installation for any of those either.

To "install" the software, simply download the .exe file to your preferred location and run it. Windows prevents processes and applications from writing into the Program Files folder, so do not place the .exe there, as the program will want to write files and folders to the disk (measurement logs, configuration files and such), and the default location is under the folder where the program is ran from.


When updating to a new version, it is advised to first make a new folder to archive the previous version. Name the folder with the date of the old version (from the windows title) and place the old .exe file in that folder. This way, in case a new update of the software has a problem, the previous version can be easily restored and used (by copying the .exe back to the main application folder) until the problem with the new update is solved.

1.1 USB drivers


When connecting the instruments to a PC, the USB hardware used in the devices is usually automatically recognized and installed correctly by Windows. In case they are not, on IT department managed computer, old versions of Windows, or for some other reason, the driver installation can be performed with drivers or software downloaded from https://ftdichip.com/drivers/vcp-drivers/ where the correct type is VCP (Virtual COM port).

1.2 USB connections

The depth of USB daisy chain has limits, as each new hub needs to supply power to the hubs downstream. Often the USB ports on the exterior of a computer already come from an internal hub. The build quality of the internal hub and its drivers are main determining factor for the possible depth of the daisy chain. Overall it is advised to avoid deep daisy chains when possible, and in case the PC lacks sufficient USB ports to parallel connect to all devices, acquire high-quality, externally powered USB hub and connect all FlowSeg devices directly to that hub. This keeps the depth of the USB network to a minimum.

2 Rearranging the form

The form proportions can be resized by dragging on the splitter bars marked above with red arrows. This can be useful on a laptop with a small screen and low resolution.

3 Devices

The software searches for devices from all available COM ports. The process is automatic once initiated by the user from the *Devices* menu. All found devices are listed on the *Available devices* list-view, with their relevant details.

	- 2024-02-18			
ile Edit De	vices Graph			
	Search device	es		
היינויניינייני				
0.0 0.2	0.4 0.6	0.8 1.0 1	.2 1.4	16 18 20
Available d	evices			
Available de	evices State	Instrument	Device	Name or role
		Instrument Simulated	Device	Name or role Virtual Demo
COM port	State			
COM port X-COM	State Unknown	Simulated	MFC	Virtual Demo

The first listed device is a virtual device, for the purpose of trying out

the software without the need of an actual physical instrument. Some functionality may not work properly for this demonstration device.

COM port	Each device has its own COM port for communicating with the software.
State	The device state is unknown at first, when the software does not know better. Once the user has configured the device the state changes to ready , meaning the device can now be operated. When device is performing a segment program, the state is segment , and direct when in direct control. Once these operations are stopped, the state changes to idle , which is the same as ready.
Instrument	The type of the instrument: Gas, Fluid, Custom mixer, etc.
Device	An instrument can have a number of devices inside, for example a gas mixer instrument can have one or more mass flow controllers (MFC). Each controller can be individually configured and controlled. MFCs are typically suffixed by the gas line identification, designated by a letter. Thus MFCA is the MFC on gas line A, MFCB on gas line B and so forth, should the instrument only have one device inside, the keyword will not have a suffix, for example most fluid devices only have one syringe pump, designated with word Pump.
Name or role	The nickname or purpose of the device, can be edited by user.

Important!

Many actions in the software apply to the currently selected device or currently selected multiple devices. Use *ctrl* or *shift* and *left mouse click* to select multiple devices.

4 Configuring a device

	For selected device
Name or role	Configure Design segments Direct control
Virtual Demo Prototype	Device Type MFCB
Prototype	
Prototype	Device Name Prototype
	Device color in software 32768
	Fluid Ar Ar Argon v
	Flow unit
	Unit name min/min or sccm
	Temperature, °C 0 32°F
	Pressure, bar 1.01325 14.696 psi
	Some ref. conditions 0 32 1.01325 NIST, ISO 10780, formerly IUPAC (STP) until 1982 \checkmark
	Tools
	Apply configuration

The *configure* tab is used to define the parameters of the selected device.

Device type is read only property and shows instrument and device.

The *Device name* is nickname or role for the instrument.

Color of the device series on the graph and the color of the thread-communications led.

For MFCs, the *Fluid* is any of the hardcoded gases, any user-defined static gas mixture, or a dynamic mixture from another Gas device.

Flow unit is a combination of (flow) *unit name, reference temperature* and *reference pressure.* The drop down menu allows quick-selecting some typical reference conditions like mln/min or sccm. The unit g/min does not need reference conditions.

In practice, volumetric flow units mean, that if the temperature and the pressure were as defined, the volume of the gas would be the said amount. The actual conditions are almost never the reference conditions, so the reported amount of flow and the actual amount of flow differ even as much as 10%. Furthermore the default, standard and normalized reference conditions have many conflicting definitions that vary between region and sector of industry.

Therefore it is recommended always to stick to the same definition, practice, or use g/min which is independent of conditions.

By default the software and devices use 25°C and 1.01325 bar A as the reference conditions. This way, the actual flow and the reported flow are close to each other for most users.

For *pump* type device, the fluid list included distilled H2O and custom user defined liquids. The user may define the *syringe size* used in μ L, and the *fluid temperature* in °C (which affects the fluid density).

Once all definitions are checked and confirmed, they are applied to the selected device when **Apply configuration** is clicked.

This tab also has the *Tools* section for special actions.

Initialize performs factory reset and applies the settings necessary for a device to work with the software. This is normally not necessary and should only be done when advised by the device support.

Prime pump performs several cycles of syringe fill/dispense to remove old fluid and or trapped air from the system.

Change syringe moves the plunger to the bottom position for syringe change (and locks the plunger in place until next software reset for safety)

	For selected device					
Name or role	Configure Design segments	Direct control				
Virtual Demo Prototype	Selected device Prototype M	FCB	Add / Apply Segment	Time, m 0	Flow, %	Туре
Prototype	Selected device Prototype In		Delete Segment	1	100	Step Ramp
Prototype	Maximum flow 500	mln/min or sccm	Delete Segment	1	0	Step
	Start time, m 1	1 minute				
	Segment flow, % 10	50 mln/min or sccm				
	Segment type Step					
	Segment pr	rogram termination type				
	Keep las	st flow indefinitely				
	Selected devices					
	Start segment program	n(s)				
	Stop segment program					

Design segments

5

A *segment program* is a list of instructions for a device to follow what time, what flow, and type of transition from one flow to another. A *segment* is one instruction in a segment program. A segment has *start time* given in minutes, a *flow* given in % of device maximum flow, and *type* of transition.

This tab shows maximum flow for the device in user-specified units. The time in minutes is automatically shown as days, hours and minutes. The flow is automatically shown in user-specified flow units. The transition type *Step* is immediate while *Ramp* is linear transition from previous value to the current value.

It is possible to add and edit segments by clicking the *Add/Apply Segment* (a segment is edited if segment is selected, and added if not selected). *Delete segment* removes selected segment.

Segment termination type determines what happens after the last segment, the naming of the options is supposed to be self-explanatory:

- Keep last flow indefinitely
- Repeat segment program
- Stop flow (this device)
- Stop flow (all devices)

The Start segment program(s) button starts the segment programs for all selected devices.

The Stop segment program(s) button stops the segment programs for all selected devices.

5.1 Load and save segment programs

Right-clicking on the segment program list-view (not over existing lines) opens a pop-up menu with 'load' and 'save' options. These said operations allow for text file interaction for easy storing and reusing segment programs.

Should these files be edited manually, the format rules are follows:

Each single line makes one segment of the segment program. A line is made of 3 mandatory items: **Time**, **Setpoint**, **Ramp type**, and an optional **Comment** item, each separated with empty space.

Time and Setpoint are decimal numbers with full stop as separator: 123.456 and the units are minutes and % accordingly. (Do note that for example 10% setpoint means different things on different devices as it is always defined from device maximum theoretical flow.)

Ramp type is either: Step or Ramp

Comment is one chunk of alphanumeric characters a to Z, 0 to 9, %, *, @, / or _ where the _ character will be replaced with space when the program is loaded into the user interface.

5.2 Shared segments overview (Data table)

software - 2024-04-03 File Edit Data Devices Show Table Show Segment Prog	·	The data table (a tabulated text programs.	•				•	•	Ŭ
Show Device Flows Clear Graph & Rem	software - File Edit Dat	2024-04-03 a Devices							
	Time,m	Time		M MFC	· · · · · · · · · · · · · · · · · · ·	MFCB		6 MFCA	
e table shows	0.000		+-Setpoint-		1 0	Step	100	Step	
lowing columns.	1.000 2.000	1m 2m 2m 20g	100	Ramp Step	100 0	Ramp Step		Ramp	
 User defined time unit 	2.500 3.000 3.500 4.000	2m 30s 3m 3m 30s 4m	i 50 I 30 I 0	Ramp Step Step Ramp	 			Down	
• Human-	9.000	9m	I		I		11	Ramp	

readable time

• Device specific column with setpoint in %, and Type of segment. (Notes are omitted in this table), repeated for all present devices.

Should device lack a segment at a time some other device has one, an empty column is added.

5.3 Data view

Same memo has the flows from devices below the Segment table.

7 Direct control

	For selected device							
Name or role Virtual Demo	Configure	Design segments	Direct control					
Prototype	Maximu	m flow 500	mln/min or oc	6 72				
Prototype	Maximu	III HOW 500	mln/min or sc	CIII				
Prototype	Setpo	oint, % 15	75 mln/min	or sccm				
		Apply	setpoint					
		S	top					

Direct control tab is the simplest way to control (configured) device or devices.

It allows applying a flow *setpoint* to one or more devices.

Applying a setpoint to a device will stop any segment program the device may be performing.

To stop the flow and the graph logging, click the Stop

button.

Each device will remember its direct control setpoint even when it is not "Applied" with the button, all it takes for a device to memorize the setpoint is to change the value on the field when a device is selected. When "Apply setpoint" is clicked, and when more than one device is selected, each device is started with its own memorized setpoint.

8 Pump setpoint

		For selected device
Device	Name or role	Configure Design segments Direct control
MFC Pump	Virtual Demo Prototype	Mayleum Rev 212.5 vi/min
		Maximum flow 312.5 µl/min
		Setpoint, % 0.000333 Desired/Achievable 0.001 041 / 0.001 041 µl/min Relative error:0.000 %
		Apply setpoint
		Stop

The design segments and direct control in previous chapters had images with MFC selected. The functionality and process for Pump is the same, but some additional setpoint information if displayed.

The pump is able to dispense its contents very slowly, allowing setpoint down to 0.000 333 % of the (theoretical) maximum flow. Actual maximum flow is currently limited to ~30% of theoretical maximum flow in order to save syringe lifetime.

Beside the setpoint the resulting desired flow is displayed, as well as the actual achievable flow, and their relative difference.

Input fluid density is currently locked at 0.99819 which is the density of H_2O at 20°C and the fluid input temperature will not change anything.

9 Pump ramp segments

In this manual text "pH₂O" will signify any evaporated fluid content in the made mixture, as this is simpler to write than to say each time something like: "To achieve dynamically changing moisture, or any other evaporated fluid content"

In general ramp is a linear interpolation between start and finish setpoints. This works fine for MFCs, but for pump each setpoint change the pump receives new command, which starts with filling the syringe (which takes brief moment). By the time the device is handled again by the software (this happens many times per second), when performing a ramp-type segment, the interpolated setpoint has already changed, just a bit, and the new command always starts with refilling the syringe. So, a ramp-type segment with the pump would result just as endless loop of refilling the syringe never getting to the dispense part. The problem is solved by only applying new setpoint every 30 seconds.

10 About dynamic fluid content

- In general experiments with changing pH₂O should always advance from dry to moist or from low partial pressure to high. Doing the experiment the other way is slower and the effects on the experiment are gradual and harder to quantify.
- Pump segments are always steps, even when user asks for ramps, in which case the ramp is automatically converted to steps. These "ramp-steps" are always one minute long.
- Dynamic gas flow paired with static pump function produces smooth pH₂O gradients when the one minute long steps are too coarse.

11 Mixture calculations

Configure	Design segr	ments	Direct control	Mixtures	
Recipe			Mixture		
COM5 40. COM6 8.12 COM7 0.00	25 S	< >	Mixture descrip	tion comes	here
Add segme	ents				
Time, n	n 10				
	Add				

Mixtures tab has the tools to quickly design segment programs based on mixture properties such as partial pressures of each component, total flow, absolute and relative humidity, mass and volumetric flow for each component and totals.

For the mixture designer to work, device(s) must be configured, i.e. they must have a fluid assigned to them to calculate the mixture with.

When suitable mixture design is achieved, it can be sent (*Add* button) to each participating device as a segment in their segment programs, added to the specified time, with the optional comment. The devices will then

achieve said mixture at said time (if their outputs are connected together).

In this early version the mixture design is text based. Each line represents one device source, and the calculations will automatically fetch the gas type and maximum flow for the device to be able to calculate the resulting mixture. The device is defined as capital COM suffixed with integer number matching the devices address. Space separates the device COM port from the desired flow given in % of device maximum flow, where decimals are separated with full stop. For convenience the segment type can be defined here, also separated with space; use R for Ramp and S for Step. The segment type can be omitted, and if so, the default segment type will be Step.

dama and a										
Name or role /irtual Demo	Configure	Design segments	Dire	ect control	Mixtures					
Prototype	Recipe			Mixture						
	COM5 50		~	Mixture:	'Name'					
Prototype	com4 1									
Prototype	com6 30			Inputs	3:					
				Air		0.294 8				
				H2O			97 g/min			
				NF3		0.043 53	si g/min			
				Compor	nents:					
				N2		0.226 14				
			\sim	02		0.068 6				
				H2O		0.003 0				
	Recipe			NF3		0.043 53	31 g/min			
	Name			Partia	al pressui	'es:				
				N2	ir prosoul		640 ppm			
	Add segme	ents		02			mag 810			
		-	- 1	H2O			623 ppm			
	Time, n	n 0		NF3			719 ppm			
		Add		Volume	etric flow	e ml/mir				
		Add		°C	BarA	N2		H20	NF3	То
					.01325	180.9		3.9		246.
					.01325	194.9		4.1		265.
					.01325	197.5				269.
					2.0265	98.7		2.1		134.
				150 1	.01325	280.3	74.5	6.0	21.3	382.
				Mistur	e has flu	d.d.				
				°C			/100%RH Cu	creat nom	RH %	
				ŏ	1.01325	Hax ppin	6 033	15 623		
				21	1.01325		24 557	15 623		
				25	1.01325		31 285	15 623		
				25	2.0265		15 642	15 623		
				150	1.01325		689 580	15 623		

Various flows from various devices, if combined, would make such mixture. Partial pressures, volumetric flows, and even relative humidity is calculated.